Some TF version errors in [Text generation using a RNN with eager execution]
Tensorflow RNN tutorials are basically based on the TF version 1.13 or higher.
I was following this one below.
https://www.tensorflow.org/tutorials/sequences/text_generation
- Error 1
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-70-7589cf238f4d> in <module> ----> 1 sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1) 2 #sampled_indices = tf.random.multinomial(example_batch_predictions[0], num_samples=1) 3 # use tf.random.multinomial if using TF 1.12 or lower. 4 sampled_indices = tf.squeeze(sampled_indices,axis=-1).numpy() AttributeError: module 'tensorflow._api.v1.random' has no attribute 'categorical'
Solution
sampled_indices = tf.random.multinomial(example_batch_predictions[0], num_samples=1)
# use tf.random.multinomial if using TF 1.12 or lower.
- Error 2
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-72-9ea97acf159a> in <module> 4 # if using TF 1.12 or lower, use 'tf.keras.backend.sparse_categorical_crossentropy' 5 ----> 6 example_batch_loss = loss(target_example_batch, example_batch_predictions) 7 print("Prediction shape: ", example_batch_predictions.shape, " # (batch_size, sequence_length, vocab_size)") 8 print("scalar_loss: ", example_batch_loss.numpy().mean()) <ipython-input-72-9ea97acf159a> in loss(labels, logits) 1 def loss(labels, logits): ----> 2 return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True) 3 #return tf.keras.backend.sparse_categorical_crossentropy(labels, logits, from_logits=True) 4 # if using TF 1.12 or lower, use 'tf.keras.backend.sparse_categorical_crossentropy' 5 TypeError: sparse_categorical_crossentropy() got an unexpected keyword argument 'from_logits'Solution
return tf.keras.backend.sparse_categorical_crossentropy(labels, logits, from_logits=True) # if using TF 1.12 or lower, use 'tf.keras.backend.sparse_categorical_crossentropy'
No comments:
Post a Comment